IPv6 on Nokia Siemens Networks Strategy

08-11-2011 Tiago Santos

Agenda

- **1.** Nokia Siemens Networks Company Overview
- 2. The Need for IPv6
- 3. Transition to IPv6
- 4. Wrap Up

- 1. Nokia Siemens Networks Company Overview
- 2. The Need for IPv6
- 3. Transition to IPv6
- 4. Wrap Up

3

IPv6 ATEC / Nov / 2011

Global company with a rich heritage

- Joint venture of Nokia and Siemens, recently acquired Motorola's wireless networks infrastructure business
- Started operations on April 1, 2007
- €12.7 bn net sales in 2010
- 120+ years of telecom experience
- ~74,000 employees
- ~46,000 service professionals (including externals)
- > 80 out of the top 100 operators worldwide
- 150+ countries
- 3 billion mobile subscribers and ¼ of world's voice households served

Nokia Siemens Networks – an industry leader

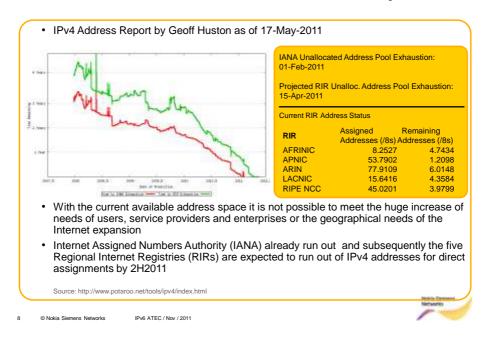
Focused on helping CSP's transform their network, operations, the customer experience and ultimately, the CSP's business

- Strong number 2 in the global wireless segment
- Number 3 in global telecoms market
- Number 1 in mobile broadband
- Best response to the 3G smart device challenge
- · Commercial and technological leadership in LTE
- Fastest growing professional services and managed services in the industry
- Number 1 in OSS/BSS deliveries
- Number 1 in customer experience management
- Financial strength and stability
- Broad scope of action:
 - Business Solutions
 - Global Services
 - Network Systems


5 © Nokia Siemens Networks

emens Networks IPv6 ATEC / Nov / 2011

Ubiquitous IP One common denominator to NSN's portfolio



- **1.** Nokia Siemens Networks Company Overview
- 2. The Need for IPv6
- 3. Transition to IPv6
- 4. Wrap Up

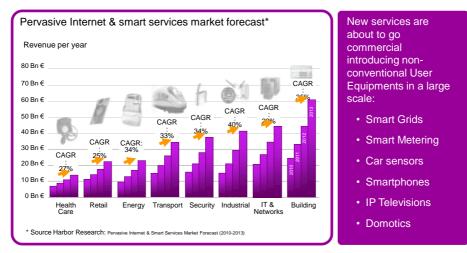
Main motivation for IPv6: IPv4 address depletion

IPv6 ATEC / Nov / 2011

Facts on IPv4 Internet usage

Internet penetration lagging in many regions => growth is inevitable

As networks are growing the negative impact of workarounds introduced to maintain IPv4 will impact more and more

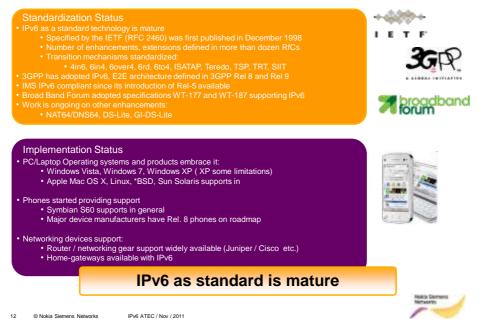


© Nokia Siemens Networks

9

works IPv6 ATEC / Nov / 2011

IP is key to enter growing new business segments successfully



10 © Nokia Siemens Networks IF

IPv6 Key Features and Enhancements

	IPv4	IPv6
Addressing and Routing	 IPv4 addresses 32 bit long NAT is usually used to overcome lack of IPv4 public addresses with its drawbacks Checksum operation Datagram fragmentation Options integrated into the basic IPv4 header 	 IPv6 uses a 128 bit addressing scheme Improved Routing Efficiency with Hierarchical Address for Aggregation Improved Multicast support with larger number of Multicast Groups NAT not required in pure IPv6 No checksum Router never fragment packets Six Extension Headers for options Hop-by-Hop Options, Routing, Fragment, Destination Options, Authentication, Encrypted Security Payload
System Management	ARP for resolving IP addresses to link-layer addresses IP configuration: Static, DHCP (Statefull configuration)	Neighbor discovery Stateless auto-configuration Duplicate Address Detection
Security	 IPSec is an extension of the IPv4 protocol NAT turns security more complex 	 IPSec is part of IPv6 basic by default Security policies more easier without NAT
Mobility	 In Mobile IPv4, the foreign network has a Foreign Agent 	 In Mobile IPv6 foreign agents are not needed Mobile IPv6 uses Routing Header and Destinations Options Header
Quality of Service	 Type of Service (ToS) field in IPv4 header DiffServ used (DSCP bits from ToS) DSCP to MPLS EXP mapping used 	 Traffic Class field (8 bits) is available Flow label (20 bits) enables per-flow processing Routing and Hop-By-Hop Extension headers can be used to signal QoS requirements

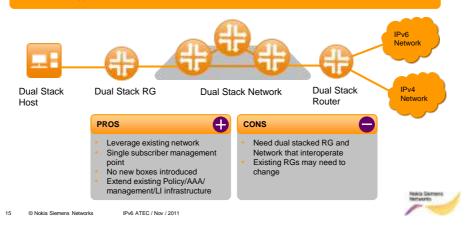
IPv6 maturity

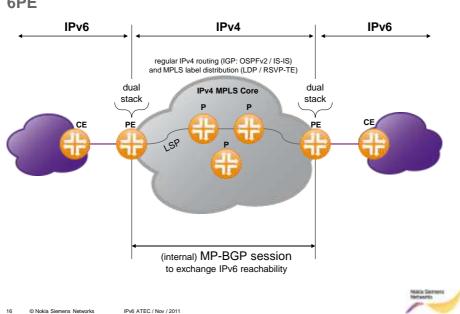
- **1.** Nokia Siemens Networks Company Overview
- 2. The Need for IPv6
- 3. Transition to IPv6
- 4. Wrap Up

IPv6 Transition Tools

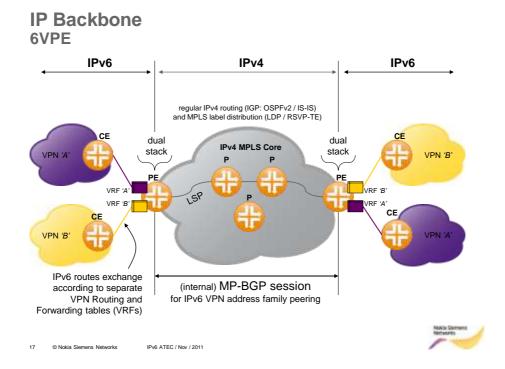
IPv6 ATEC / Nov / 2011

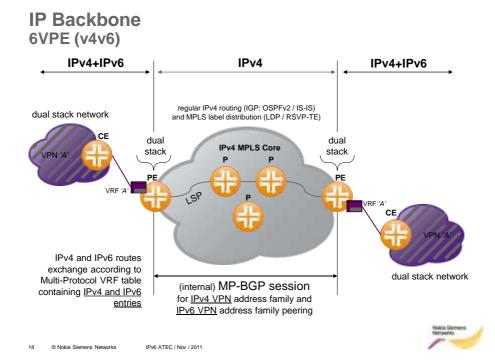
Network Solution	IPv4 Depletion Mitigation	IPv6 to IPv4 Translation
 Core/Edge Backbone Dual Stack 6PE 6VPE Access/CPE Network Dual Stack Enterprise router Residential gateway Mobile User Equipment Tunneling IPv6 over IPv4: 6to4, Teredo, ISATAP, 6rd 	 •NAT444 • End point independent NAT •DS-Lite • Tunneling IPv4 over IPv6 	•NAT64 • DNS64 • Stateless • Statefull

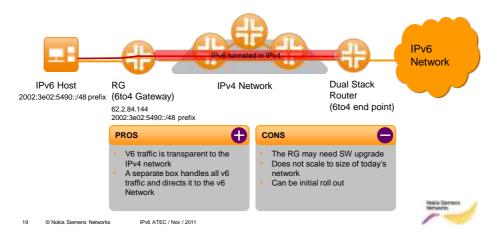


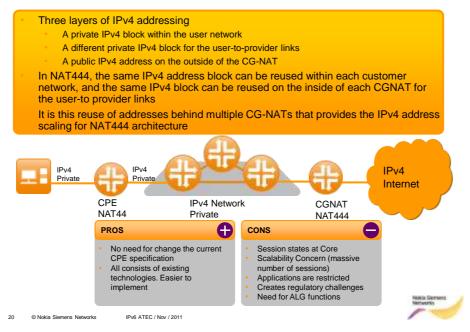

Source: Source

14

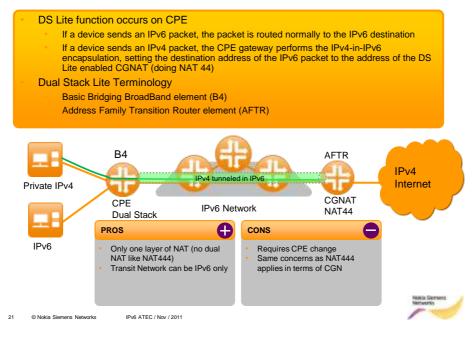

IP Backbone and RG Dual Stack

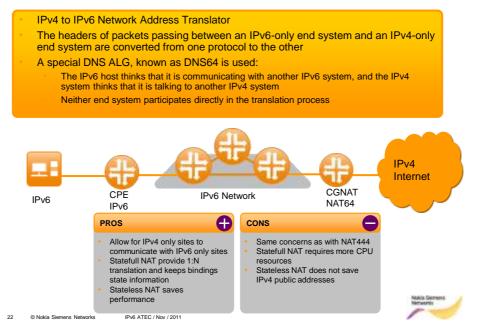

- · IPv4 and IPv6 protocol coexist in the same network / network elements
- Dual Stack capable devices supports IPv4 and IPv6 simultaneously in the same interface
- Dual Stack routers support both IPv4 and IPv6 routing protocols and are able to forward IPv4 as well as IPv6 packets
- Enables applications to communicate across an IPv4 or an IPv6 network

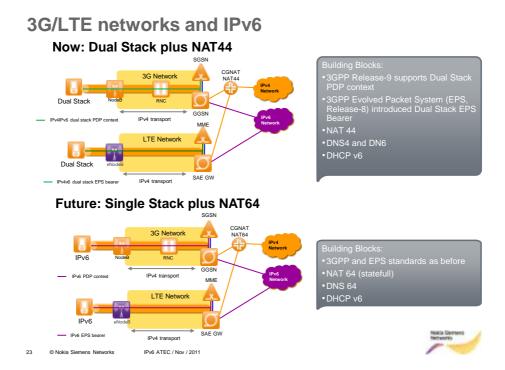

IP Backbone 6PE



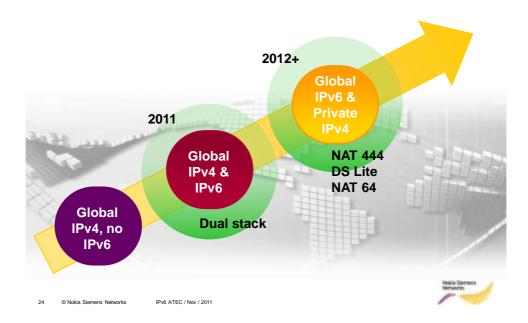
6to4 Tunnel


- Router-to-Router automatic tunnel method
 - IANA has assigned a special TLA for the 6to4 scheme. The address prefix is 2002::/16
 - IPv6 addresses' prefix derived from 2002::/16 prefix and 6to4 Gateway IPv4 address
 - 6rd is similar to 6to4, with the key differentiator that it utilizes an CSP's own IPv6
 address prefix rather than 2002::/16


NAT444

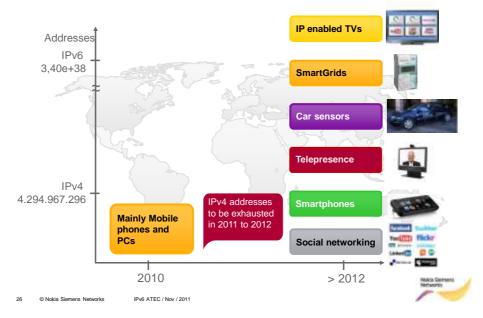


DS-Lite

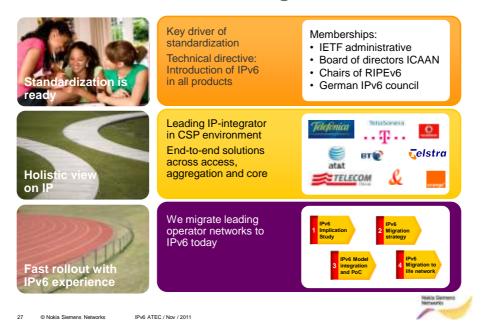


NAT64

IPv6 Transition Summary


- **1.** Nokia Siemens Networks Company Overview
- 2. The Need for IPv6
- 3. Transition to IPv6
- 4. Wrap Up

25



IPv6 scalability Proliferation of applications and devices

IPv6 ATEC / Nov / 2011

Nokia Siemens Networks brings IPv6 to networks

Thank You

